
Double Greedy Algorithm for Submodular Maximization1

• Let V be a finite universe. A set function f : 2V → R is submodular if it satifies the following
“diminishing marginal utilities” property.

For any A ⊆ B and i ∈ V \B, f(A ∪ i)− f(A) ≥ f(B ∪ i)− f(B) (1)

In this note, we describe a beautiful randomized algorithm which gives a 1
2 -approximation to the

problem of finding a set S maximizing f(S). Note that this problem is non-trivial as f need not be
monotone. Indeed, it generalizes the maximum cut problem in graphs. The algorithm accesses the
function via queries, and makes at most O(n2) queries.

• We first describe a deterministic 1
3 -approximation.

1: procedure DOUBLE GREEDY(Submodular f : 2V → R≥0):
2: . Find set S which maximizes f(S)
3: Order the elements of V arbitrarily, so we may assume it to be {1, 2, . . . , n}.
4: Initialize A← ∅ and B ← V
5: for i = 1 to n do:
6: ai ← f(A ∪ i)− f(A)
7: bi ← f(B \ i)− f(B)
8: if ai ≥ bi then:
9: A← A ∪ i . B remains unchanged.

10: else:
11: B ← B \ i . A remains unchanged.

12: . Note that at this point A = B.
13: return A = B.

Theorem 1. DOUBLE GREEDY gives an 1
3 -approximation unconstrained submodular function

minimization.

Proof. I must confess that this short and simple proof is still magical to me. For simplicity, let (Ai, Bi)
denote the set (A,B) at the end of loop i with (A0, B0) = (∅, V ). Thus, ai = f(Ai−1 ∪ i)− f(Ai−1)
and bi = f(Bi−1 \ i)− f(Bi−1).

Let the optimal set be O ⊆ V . For 0 ≤ i ≤ n, define Ci := Ai ∪ (Bi ∩O). Observe that Ai ⊆ Ci ⊆
Bi for all i. It is going to be important to understand how the set Ci behaves depending on where the
element i goes. The following captures this.

If Ai = Ai−1 ∪ i, Ci =

{
Ci−1 if i ∈ O

Ci−1 ∪ i if i /∈ O
If Bi = Bi−1 \ i, Ci =

{
Ci−1 \ i if i ∈ O

Ci−1 if i /∈ O
(2)
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Finally, note An = Bn = Cn which is the set the algorithm returns.

Now define
Φi := f(Ai) + f(Bi) + f(Ci)

Observe: Φ0 = f(V ) +f(O) ≥ opt and Φn = 3 ·alg. The proof of the theorem immediately follows
from the following claim, for we get Φn ≥ Φ0.

Claim 1. For any i ≥ 1, Φi ≥ Φi−1.

Proof. We begin with a simple observation : ai + bi ≥ 0 which follows from the submodularity of f .
Thus, the larger of the two is ≥ 0. Let ∆Φi := Φi − Φi−1. There are two cases to consider: whether
i enters A in loop i or i leaves B in loop i.

The first case occurs when ai ≥ bi. In this case we see ∆Φi = ai + f(Ci) − f(Ci−1). Referring to
(2), if i ∈ O, then ∆Φi = ai ≥ 0. Otherwise, Ci = Ci−1 ∪ i. Since Ci−1 ⊆ Bi−1, by submodularity
f(Ci)− f(Ci−1) ≥ f(Bi−1)− f(Bi−1 \ i) = −bi. Thus, ∆Φi = ai − bi ≥ 0.

The second case occurs when ai < bi. In this case we see ∆Φi = bi + f(Ci) − f(Ci−1). Again,
referring to (2), if i /∈ O, then ∆Φi = bi ≥ 0. Otherwise, Ci = Ci−1 \ i. Since Ai−1 ⊆ Ci−1, by
submodularity f(Ci−1)−f(Ci−1\i) ≤ f(Ai−1∪i)−f(Ai−1) = ai. That is, f(Ci)−f(Ci−1) ≥ −ai
implying ∆Φi = bi − ai ≥ 0.

• Getting a 1/2-approximation via Randomization. A slight tweak to the above algorithm leads to
an 1/2-approximation. The algorithm is randomized and returns a distribution over subsets. The
expected value of the subset returned is at least opt

2 .

1: procedure RANDOMIZED DOUBLE GREEDY(Submodular f : 2V → R≥0):
2: . Find set S which maximizes f(S)
3: Order the elements of V arbitrarily, so we may assume it to be {1, 2, . . . , n}.
4: Initialize A← ∅ and B ← V
5: for i = 1 to n do:
6: ai ← max(0, f(A ∪ i)− f(A))
7: bi ← max(0, f(B \ i)− f(B))
8: Toss a coin which comes heads with probability pi := ai

ai+bi
9: If heads, A← A ∪ i; else B ← B \ i.

10: . Note that at this point A = B.
11: return A = B.

Theorem 2. The expected function value of the set returned by RANDOMIZED DOUBLE GREEDY

is at least opt
2 .
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Proof. Like the previous proof, this one is short and magical too. The potential is slightly different
this time. It is

Φi := f(Ai) + f(Bi) + 2f(Ci)

Now, Φ0 ≥ 2opt and Exp[Φn] = 4Exp[alg]. The proof of the theorem, therefore, follows from the
following lemma.

Lemma 1. For any i ≥ 1, Exp[Φi − Φi−1 | Ai−1, Bi−1] ≥ 0

Proof. Note that Exp[f(Ai) − f(Ai−1) | Ai−1, Bi−1] = pi · (f(Ai−1 ∪ i)− f(A)) =
a2i

ai+bi
. Simi-

larly, Exp[f(Bi)− f(Bi−1) | Ai−1, Bi−1] =
b2i

ai+bi
. Next, note that

Exp[f(Ci)− f(Ci−1) | Ai−1, Bi−1] = pi · [f(Ci)− f(Ci−1) | Ai = Ai−1 ∪ i]

+ (1− pi) · [f(Ci)− f(Ci−1) | Bi = Bi−1 \ i] (3)

Now comes the kicker. Using (2), one sees that if i ∈ O then the expression multiplying pi in (3) is 0
and if i /∈ O, the expression multiplying (1−pi) is 0. Furthermore, if i ∈ O, as argued in Claim 1, the
expression multiplying (1− pi) is at least −ai, and if i /∈ O, the expression multiplying pi is ≥ −bi.
In sum, we get that

Exp[f(Ci)− f(Ci−1) | Ai−1, Bi−1] ≥ max (−pibi,−(1− pi)ai) = − aibi
ai + bi

Putting everything together, we get Exp[Φi − Φi−1 | Ai−1, Bi−1] ≥ (ai − bi)
2/(ai + bi) ≥ 0.

Notes

The algorithms described here are from the paper [2] by Buchbinder, Feldman, Naor and Schwartz. My
presentation follows a presentation by Jan Vondrák. The approximation factor is tight in the sense that
any algorithm obtaining an (12 + ε)-approximation must make exponentially many queries to the submod-
ular function oracle. This result can be found in the paper [3] by Feige, Mirrokni, and Vondrák. The
1
2 -approximation algorithm above is randomized. A deterministic 1

2 -approximation algorithm was given
later in the paper [1] by Buchbinder and Feldman.
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