Double Greedy Algorithm for Submodular Maximization ${ }^{1}$

- Let V be a finite universe. A set function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if it satifies the following "diminishing marginal utilities" property.

$$
\begin{equation*}
\text { For any } A \subseteq B \text { and } i \in V \backslash B, \quad f(A \cup i)-f(A) \geq f(B \cup i)-f(B) \tag{1}
\end{equation*}
$$

In this note, we describe a beautiful randomized algorithm which gives a $\frac{1}{2}$-approximation to the problem of finding a set S maximizing $f(S)$. Note that this problem is non-trivial as f need not be monotone. Indeed, it generalizes the maximum cut problem in graphs. The algorithm accesses the function via queries, and makes at most $O\left(n^{2}\right)$ queries.

- We first describe a deterministic $\frac{1}{3}$-approximation.

```
procedure Double Greedy(Submodular \(f: 2^{V} \rightarrow \mathbb{R}_{\geq 0}\) ):
    \(\triangleright\) Find set \(S\) which maximizes \(f(S)\)
    Order the elements of \(V\) arbitrarily, so we may assume it to be \(\{1,2, \ldots, n\}\).
    Initialize \(A \leftarrow \emptyset\) and \(B \leftarrow V\)
    for \(i=1\) to \(n\) do:
        \(a_{i} \leftarrow f(A \cup i)-f(A)\)
        \(b_{i} \leftarrow f(B \backslash i)-f(B)\)
        if \(a_{i} \geq b_{i}\) then:
            \(A \leftarrow A \cup i \triangleright B\) remains unchanged.
        else:
            \(B \leftarrow B \backslash i \triangleright A\) remains unchanged.
    \(\triangleright\) Note that at this point \(A=B\).
    return \(A=B\).
```

Theorem 1. Double Greedy gives an $\frac{1}{3}$-approximation unconstrained submodular function minimization.

Proof. I must confess that this short and simple proof is still magical to me. For simplicity, let $\left(A_{i}, B_{i}\right)$ denote the set (A, B) at the end of loop i with $\left(A_{0}, B_{0}\right)=(\emptyset, V)$. Thus, $a_{i}=f\left(A_{i-1} \cup i\right)-f\left(A_{i-1}\right)$ and $b_{i}=f\left(B_{i-1} \backslash i\right)-f\left(B_{i-1}\right)$.
Let the optimal set be $O \subseteq V$. For $0 \leq i \leq n$, define $C_{i}:=A_{i} \cup\left(B_{i} \cap O\right)$. Observe that $A_{i} \subseteq C_{i} \subseteq$ B_{i} for all i. It is going to be important to understand how the set C_{i} behaves depending on where the element i goes. The following captures this.

$$
\text { If } A_{i}=A_{i-1} \cup i, C_{i}=\left\{\begin{array}{ll}
C_{i-1} & \text { if } i \in O \tag{2}\\
C_{i-1} \cup i & \text { if } i \notin O
\end{array} \quad \text { If } B_{i}=B_{i-1} \backslash i, C_{i}= \begin{cases}C_{i-1} \backslash i & \text { if } i \in O \\
C_{i-1} & \text { if } i \notin O\end{cases}\right.
$$

[^0]Finally, note $A_{n}=B_{n}=C_{n}$ which is the set the algorithm returns.
Now define

$$
\Phi_{i}:=f\left(A_{i}\right)+f\left(B_{i}\right)+f\left(C_{i}\right)
$$

Observe: $\Phi_{0}=f(V)+f(O) \geq$ opt and $\Phi_{n}=3 \cdot$ alg. The proof of the theorem immediately follows from the following claim, for we get $\Phi_{n} \geq \Phi_{0}$.

Claim 1. For any $i \geq 1, \Phi_{i} \geq \Phi_{i-1}$.

Proof. We begin with a simple observation : $a_{i}+b_{i} \geq 0$ which follows from the submodularity of f. Thus, the larger of the two is ≥ 0. Let $\Delta \Phi_{i}:=\Phi_{i}-\Phi_{i-1}$. There are two cases to consider: whether i enters A in loop i or i leaves B in loop i.

The first case occurs when $a_{i} \geq b_{i}$. In this case we see $\Delta \Phi_{i}=a_{i}+f\left(C_{i}\right)-f\left(C_{i-1}\right)$. Referring to (2), if $i \in O$, then $\Delta \Phi_{i}=a_{i} \geq 0$. Otherwise, $C_{i}=C_{i-1} \cup i$. Since $C_{i-1} \subseteq B_{i-1}$, by submodularity $f\left(C_{i}\right)-f\left(C_{i-1}\right) \geq f\left(B_{i-1}\right)-f\left(B_{i-1} \backslash i\right)=-b_{i}$. Thus, $\Delta \Phi_{i}=a_{i}-b_{i} \geq 0$.
The second case occurs when $a_{i}<b_{i}$. In this case we see $\Delta \Phi_{i}=b_{i}+f\left(C_{i}\right)-f\left(C_{i-1}\right)$. Again, referring to (2), if $i \notin O$, then $\Delta \Phi_{i}=b_{i} \geq 0$. Otherwise, $C_{i}=C_{i-1} \backslash i$. Since $A_{i-1} \subseteq C_{i-1}$, by submodularity $f\left(C_{i-1}\right)-f\left(C_{i-1} \backslash i\right) \leq f\left(A_{i-1} \cup i\right)-f\left(A_{i-1}\right)=a_{i}$. That is, $f\left(C_{i}\right)-f\left(C_{i-1}\right) \geq-a_{i}$ implying $\Delta \Phi_{i}=b_{i}-a_{i} \geq 0$.

- Getting a $1 / 2$-approximation via Randomization. A slight tweak to the above algorithm leads to an $1 / 2$-approximation. The algorithm is randomized and returns a distribution over subsets. The expected value of the subset returned is at least $\frac{\mathrm{opt}}{2}$.

```
procedure Randomized Double Greedy(Submodular \(f: 2^{V} \rightarrow \mathbb{R}_{\geq 0}\) ):
    \(\triangleright\) Find set \(S\) which maximizes \(f(S)\)
    Order the elements of \(V\) arbitrarily, so we may assume it to be \(\{1,2, \ldots, n\}\).
    Initialize \(A \leftarrow \emptyset\) and \(B \leftarrow V\)
    for \(i=1\) to \(n\) do:
        \(a_{i} \leftarrow \max (0, f(A \cup i)-f(A))\)
        \(b_{i} \leftarrow \max (0, f(B \backslash i)-f(B))\)
        Toss a coin which comes heads with probability \(p_{i}:=\frac{a_{i}}{a_{i}+b_{i}}\)
        If heads, \(A \leftarrow A \cup i\), else \(B \leftarrow B \backslash i\).
    \(\triangleright\) Note that at this point \(A=B\).
    return \(A=B\).
```

Theorem 2. The expected function value of the set returned by Randomized Double Greedy is at least $\frac{\mathrm{opt}}{2}$.

Proof. Like the previous proof, this one is short and magical too. The potential is slightly different this time. It is

$$
\Phi_{i}:=f\left(A_{i}\right)+f\left(B_{i}\right)+2 f\left(C_{i}\right)
$$

Now, $\Phi_{0} \geq 2$ opt and $\operatorname{Exp}\left[\Phi_{n}\right]=4 \operatorname{Exp}[\mathrm{alg}]$. The proof of the theorem, therefore, follows from the following lemma.

Lemma 1. For any $i \geq 1, \operatorname{Exp}\left[\Phi_{i}-\Phi_{i-1} \mid A_{i-1}, B_{i-1}\right] \geq 0$

Proof. Note that $\operatorname{Exp}\left[f\left(A_{i}\right)-f\left(A_{i-1}\right) \mid A_{i-1}, B_{i-1}\right]=p_{i} \cdot\left(f\left(A_{i-1} \cup i\right)-f(A)\right)=\frac{a_{i}^{2}}{a_{i}+b_{i}}$. Similarly, $\operatorname{Exp}\left[f\left(B_{i}\right)-f\left(B_{i-1}\right) \mid A_{i-1}, B_{i-1}\right]=\frac{b_{i}^{2}}{a_{i}+b_{i}}$. Next, note that

$$
\begin{align*}
\operatorname{Exp}\left[f\left(C_{i}\right)-f\left(C_{i-1}\right) \mid A_{i-1}, B_{i-1}\right]= & p_{i} \cdot\left[f\left(C_{i}\right)-f\left(C_{i-1}\right) \mid A_{i}=A_{i-1} \cup i\right] \\
& +\left(1-p_{i}\right) \cdot\left[f\left(C_{i}\right)-f\left(C_{i-1}\right) \mid B_{i}=B_{i-1} \backslash i\right] \tag{3}
\end{align*}
$$

Now comes the kicker. Using (2), one sees that if $i \in O$ then the expression multiplying p_{i} in (3) is 0 and if $i \notin O$, the expression multiplying $\left(1-p_{i}\right)$ is 0 . Furthermore, if $i \in O$, as argued in Claim 1, the expression multiplying $\left(1-p_{i}\right)$ is at least $-a_{i}$, and if $i \notin O$, the expression multiplying p_{i} is $\geq-b_{i}$. In sum, we get that

$$
\operatorname{Exp}\left[f\left(C_{i}\right)-f\left(C_{i-1}\right) \mid A_{i-1}, B_{i-1}\right] \geq \max \left(-p_{i} b_{i},-\left(1-p_{i}\right) a_{i}\right)=-\frac{a_{i} b_{i}}{a_{i}+b_{i}}
$$

Putting everything together, we get $\operatorname{Exp}\left[\Phi_{i}-\Phi_{i-1} \mid A_{i-1}, B_{i-1}\right] \geq\left(a_{i}-b_{i}\right)^{2} /\left(a_{i}+b_{i}\right) \geq 0$.

Notes

The algorithms described here are from the paper [2] by Buchbinder, Feldman, Naor and Schwartz. My presentation follows a presentation by Jan Vondrák. The approximation factor is tight in the sense that any algorithm obtaining an $\left(\frac{1}{2}+\varepsilon\right)$-approximation must make exponentially many queries to the submodular function oracle. This result can be found in the paper [3] by Feige, Mirrokni, and Vondrák. The $\frac{1}{2}$-approximation algorithm above is randomized. A deterministic $\frac{1}{2}$-approximation algorithm was given later in the paper [1] by Buchbinder and Feldman.

References

[1] Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization problems. ACM Transactions on Algorithms (TALG), 14(3):1-20, 2018.
[2] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight linear time (1/2)approximation for unconstrained submodular maximization. SIAM Journal on Computing (SICOMP), 44(5):1384-1402, 2015.
[3] Uriel Feige, Vahab Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions. SIAM Journal on Computing (SICOMP), 40(4):1133 - 1153, 2011.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified: 16th Dec, 2021
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

